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Abstract—This letter describes syntheses of (−)-(7S)-and (+)-(7R)-K252a dimers wherein a convergent bis-indole-N-glycosidic
coupling step was used for the resolution of the C(7) substituted (±)-aglycon. Dimerization of the derived monomers was achieved
via olefin methathesis. © 2002 Elsevier Science Ltd. All rights reserved.

K252a (1) (Fig. 1),1 isolated originally from the culture
broth of Actinomadura by Sezaki and then reisolated
from Nocardiopsis by Kase in a screen for antagonists
of Ca2+ mediated signaling, has been implicated in the
inhibition of several tyrosine kinases (Trks) and has
been shown to be a potent PKC inhibitor.2 Trk medi-
ated PDGF signal transduction is potentially a novel
therapeutic inroad for the treatment of human gliomas
and follows the general motif of receptor tyrosine
kinases (i.e. dimerization and autophosphorylation).3

Based on recent work demonstrating that dimeric natu-
ral product probes function particularly efficiently as
tools for chemical biology,4–6 we became curious as to
whether multivalent analogs of K252a would have a
selective influence on receptor-type kinases. Thus, we
initiated an effort to prepare K252a analogs poised for
subsequent conversion to dimeric or higher valent spe-
cies. Recently, efforts to access novel K252a analogs
have resulted in a convergent route to C7 and C2�
alkylated K252a analogs.7a–d Herein, we describe a
synthesis of (−)-(7S)-and (+)-(7R)-K252a dimers (2 and
3) utilizing olefin methathesis. The requisite monomers

were prepared using an expansion of our strategy for
the construction of C7 alkylated K252a analogs.7b,c

The synthesis of (±)-aglycon 11 is outlined in Scheme 1.
Thus, alkylation of known imine 4 with 8-bromo-1-
octene according to O’Donnel’s procedure followed by
hydrolysis of the imine afforded ethyl 2-amino-9-
decenoate hydrochloride (5) in 72% overall yield.8 A
two-step reductive amination utilizing 3,4-dimethoxy-
benzaldehyde and NaBH4 gave DMB (3,4-dimethoxy-
benzyl) protected amine 6 in 81% yield. Acylation with
ethyl hydrogen malonate under standard coupling con-
ditions (DCC/DMAP) afforded 7 in 92% yield. Dieck-
mann cyclization (NaOEt/EtOH) followed by
decarboalkoxylation in wet CH3CN gave N-DMB-pro-
tected tetramic acid 8 (84%, two steps). Subsequent
diazotransfer with 4-nitrobenzenesulfonyl azide in the
presence of Et3N smoothly gave diazolactam 9 in 93%
yield.9 According to previous protocols, 9 and biindole
10 were treated with Rh2(OAc)4 in degassed pinacolone
under reflux for 8 h. Successive C–H insertion, electro-
cyclization and aromatization gave the desired N-DMB

Figure 1.
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Scheme 1.

protected aglycon (±)-11 in 33% yield (57% based on
recovered 10).7a With 11 in hand we explored the
one-step acid catalyzed bis-indole-N-glycosidic cou-
pling with enantioenriched 12a–12d.7a,10 Slow addition
(24 h) of 12a–12d (a solution in 1,2–dichloroethane) to
11 and CSA (0.1 equiv.) in 1,2-dichloroethane followed
by an additional 48 h at reflux gave a 2:2:1:1
diastereomeric mixture of methathesis precursors (13–
16). Following isolation of the individual diastereomers
by careful preparative TLC,11–14 the initial regiochemi-
cal assignment for 13–16 was made based on 1H NMR
analysis. Subsequent assignment of the relative stereo-

chemistry to the major regioisomers (−)-13 and (+)-14
was made by comparison to previously prepared C7-
methyl-6-N-DMB-K252a7b,c and C7-benzyl-6-N-DMB-
K252a7c analogs. The relative stereochemistry of (+)-15
and (−)-16 remains ambiguous due to a lack of com-
parison data.

Treatment of (−)-13 with Grubbs’ catalyst (Scheme 2)15

(8 mol%) at room temperature in CH2Cl2 for 43 h gave
the desired dimer as a mixture of E and Z isomers.16

Subsequent hydrogenation with 5% Rh/Al2O3 afforded
(7S)-6-N-DMB-dimer 17 in 87% overall yield. Final

Scheme 2.
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DMB deprotection was carried out with TFA in the
presence of anisole to provide the (−)-(7S)-K252a dimer
(2) in 50% yield.17 An identical reaction sequence utiliz-
ing (+)-14 furnished the corresponding (+)-(7R)-K252a
dimer (3) in 49% overall yield.18

In conclusion, the first total synthesis of a C7 linked
dimer of K252a has been completed. The synthesis
expands the scope of our aglycon synthesis and estab-
lishes the feasibility of using cyclofuranosylation with
enentioenriched carbohydrate precursors as a means to
resolve racemic aglycons. Evaluation of the biological
activity of these dimers is underway and has already
established them to be potent kinase inhibitors.
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11. (−)-(7S)-(1-Octenyl)-N-DMB-K252a (13): a pale yellow
powder; [� ]D

20 −36.0 (c 0.30, CHCl3); IR (thin film/NaCl)
3298 (br w), 2930 (m), 2854 (w), 1733 (m), 1673 (s), 1646
(s), 1585 (m), 1515 (m), 1459 (s), 1392 (m) cm−1; 1H
NMR (400 MHz, acetone-d6): � 9.51 (d, J=7.9 Hz, 1H),
8.09 (d, J=7.3 Hz, 1H), 8.00 (d, J=8.2 Hz, 1H), 7.81 (d,
J=8.1 Hz, 1H), 7.51 (app t, J=7.8 Hz, 1H), 7.43 (app t,
J=7.8 Hz, 1H), 7.36–7.26 (m, 2H), 7.17 (dd, J=5.0, 7.6
Hz, 1H), 7.11 (d, J=1.8 Hz, 1H), 7.01 (dd, J=1.8, 8.3
Hz, 1H), 6.92 (d, J=8.3 Hz, 1H), 5.60 (ddt, J=10.2,
17.0, 6.8 Hz, 1H), 5.34 (app t, J=3.2 Hz, 1H), 5.34 (d,
J=15.1 Hz, 1H), 5.27 (s, 1H), 4.80 (m, 1H), 4.76 (m, 1H),
4.42 (d, J=15.1 Hz, 1H), 4.01 (s, 3H), 3.77 (s, 3H), 3.76
(s, 3H), 3.49 (dd, J=7.6, 14.2 Hz, 1H), 2.52 (m, 1H), 2.41
(m, 1H), 2.23 (s, 3H), 2.20 (m, 1H), 1.82–1.73 (m, 2H),
1.12–0.92 (m, 7H), 0.54 (m, 1H); 13C NMR (100 MHz,
CDCl3): � 173.8, 169.8, 149.0, 148.2, 140.3, 138.9, 137.0,
134.2, 130.4, 128.9, 126.4, 125.6, 125.0, 124.5, 124.0,
122.6, 121.9, 120.6, 120.1, 119.6, 119.3, 116.7, 114.8,
114.2, 113.9, 111.0, 110.7, 107.3, 98.9, 85.3, 84.7, 60.0,
55.8, 55.8, 53.7, 43.6, 42.2, 33.5, 29.2, 29.0, 28.6, 28.5,
22.8, 21.6; HRMS (FAB) m/z 728.3339 [calcd for
C44H46N3O7 (M+H) 728.3336].

12. (+)-(7R)-(1-Octenyl)-N-DMB-K252a (14): a pale yellow
powder; [� ]D

20 +74.8 (c 0.21, CHCl3); IR (thin film/NaCl)
3485 (br w), 3304 (br w), 3069 (w), 2998 (m), 2928 (s),
2854 (m), 1732 (s), 1673 (s), 1585 (m), 1515 (s), 1452 (s),
1392 (s) cm−1; 1H NMR (400 MHz, acetone-d6): � 9.51
(d, J=7.8 Hz, 1H), 8.12 (d, J=7.6 Hz, 1H), 8.01 (d,
J=8.5 Hz, 1H), 7.80 (d, J=8.3 Hz, 1H), 7.51 (app t,
J=7.4 Hz, 1H), 7.43 (app t, J=7.5 Hz, 1H), 7.36–7.27
(m, 2H), 7.15 (dd, J=5.1, 7.3 Hz, 1H), 7.12 (d, J=1.8
Hz, 1H), 7.02 (dd, J=1.8, 8.2 Hz, 1H), 6.93 (d, J=8.2
Hz, 1H), 5.61 (ddt, J=10.3, 17.1, 6.8 Hz, 1H), 5.39 (s,
1H), 5.36 (m, 1H), 5.34 (d, J=15.2 Hz, 1H), 4.81 (m,
1H), 4.76 (m, 1H), 4.42 (d, J=15.2 Hz, 1H), 4.02 (s, 3H),
3.78 (s, 3H), 3.77 (s, 3H), 3.51 (dd, J=7.3, 14.2 Hz, 1H),
2.54–2.35 (m, 2H), 2.36 (dd, J=5.1, 14.2 Hz, 1H), 2.18 (s,
3H), 1.82–1.75 (m, 2H), 1.12–0.83 (m, 7H), 0.50 (m, 1H);
13C NMR (100 MHz, CDCl3): � 174.2, 169.8, 149.2,
148.3, 140.1, 139.0, 137.2, 134.7, 130.3, 128.8, 126.9,
125.8, 125.0, 124.4, 124.3, 123.3, 122.4, 120.6, 120.3,
120.2, 117.1, 114.9, 114.0, 113.9, 111.0, 111.0, 107.3, 98.5,
85.0, 84.3, 58.7, 55.9, 55.8, 54.2, 43.6, 41.5, 33.6, 29.2,
29.1, 28.8, 28.6, 22.8, 21.6; HRMS (FAB) m/z 728.3339
[calcd for C44H46N3O7 (M+H) 728.3336].
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13. (+)-Indolocarbazole 15 (isomer 1): a pale yellow powder;
[� ]D

20 +68.7 (c 0.31, CHCl3); IR (thin film/NaCl) 3485 (br
m), 3333 (br m), 3056 (m), 2999 (m), 2928 (s), 2854 (m),
1732 (s), 1671 (s), 1585 (m), 1514 (s), 1451 (s), 1400 (s)
cm−1; 1H NMR (400 MHz, acetone-d6): � 9.76 (d, J=8.0
Hz, 1H), 8.14 (d, J=7.8 Hz, 1H), 7.94 (d, J=8.6 Hz,
1H), 7.88 (d, J=8.5 Hz, 1H), 7.51 (app t, J=7.7 Hz, 1H),
7.44 (app t, J=7.8 Hz, 1H), 7.35–7.27 (m, 2H), 7.16 (dd,
J=5.0, 7.3 Hz, 1H), 7.10 (d, J=1.9 Hz, 1H), 7.01 (dd,
J=1.9, 8.2 Hz, 1H), 6.91 (d, J=8.1 Hz, 1H), 5.60 (ddt,
J=10.2, 17.0, 6.8 Hz, 1H), 5.34 (d, J=14.9 Hz, 1H), 5.30
(app t, J=3.7 Hz, 1H), 5.26 (s, 1H), 4.81 (m, 1H), 4.76
(m, 1H), 4.42 (d, J=14.9 Hz, 1H), 4.00 (s, 3H), 3.77 (s,
3H), 3.75 (s, 3H), 3.49 (dd, J=7.3, 13.8 Hz, 1H), 2.53 (m,
1H), 2.42 (m, 1H), 2.26 (m, 1H), 2.23 (s, 3H), 1.82–1.74
(m, 2H), 1.13–0.94 (m, 7H), 0.52 (m, 1H); 13C NMR (100
MHz, CDCl3): � 173.9, 170.0, 149.2, 148.3, 139.9, 138.9,
137.2, 135.2, 130.4, 127.0, 126.7, 126.4, 125.6, 125.2,
125.1, 122.9, 122.5, 120.4, 120.4, 120.2, 120.0, 117.8,
114.3, 114.0, 112.8, 111.0, 110.9, 108.4, 98.5, 85.1, 84.6,
58.3, 55.9, 55.8, 54.0, 43.6, 41.7, 33.5, 29.2, 29.2, 28.7,
28.6, 22.9, 21.5; HRMS (FAB) m/z 728.3339 [calcd for
C44H46N3O7 (M+H) 728.3336].

14. (−)-Indolocarbazole 16 (isomer 2): a pale yellow powder;
[� ]D

20 −30.0 (c 0.26, CHCl3); IR (thin film/NaCl) 3485 (br
m), 3334 (br w), 3056 (m), 2998 (m), 2928 (s), 2854 (m),
1732 (s), 1671 (s), 1585 (m), 1515 (s), 1487 (m), 1450 (s),
1400 (s) cm−1; 1H NMR (400 MHz, acetone-d6): � 9.76
(d, J=8.0 Hz, 1H), 8.16 (d, J=8, 1 Hz, 1H), 7.94 (d,
J=8.5 Hz, 1H), 7.88 (d, J=8.5 Hz, 1H), 7.51 (app t,
J=7.8 Hz, 1H), 7.44 (app t, J=7.7 Hz, 1H), 7.37–7.26
(m, 2H), 7.15 (dd, J=5.0, 7.3 Hz, 1H), 7.11 (d, J=1.8
Hz, 1H), 7.02 (dd, J=1.8, 8.1 Hz, 1H), 6.92 (d, J=8.1
Hz, 1H), 5.57 (ddt, J=10.2, 17.0, 6.8 Hz, 1H), 5.39 (s,
1H), 5.32 (d, J=15.1 Hz, 1H), 5.32 (app t, J=3.5 Hz,
1H), 4.78 (m, 1H), 4.75 (m, 1H), 4.43 (d, J=15.1 Hz,
1H), 4.00 (s, 3H), 3.76 (s, 3H), 3.75 (s, 3H), 3.54 (dd,
J=7.3, 13.8 Hz, 1H), 2.56 (m, 1H), 2.47–2.33 (m, 2H),
2.18 (s, 3H), 1.79–1.67 (m, 2H), 1.07–0.87 (m, 7H), 0.45
(m, 1H); 13C NMR (100 MHz, CDCl3): � 173.9, 170.0,
149.3, 148.3, 140.0, 138.9, 137.4, 135.1, 130.4, 127.1,
126.6, 126.6, 125.7, 125.3, 125.2, 122.7, 122.6, 120.6,
120.4, 120.2, 120.0, 118.1, 114.4, 114.0, 113.0, 111.1,
111.0, 108.3, 98.6, 85.1, 84.3, 58.3, 55.9, 55.9, 54.0, 43.6,

42.1, 33.5, 29.2, 28.9, 28.7, 28.6, 22.8, 21.5; HRMS (FAB)
m/z 728.3340 [calcd for C44H46N3O7 (M+H) 728.3336].

15. Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem.
Soc. 1996, 118, 100–110.

16. Due to signal overlap in 1H NMR, E/Z ratio was not
determined.

17. (−)-(7S)-K252a dimer (2): a white powder: [� ]D
20 −145 (c

0.10, CHCl3); IR (thin film/NaCl) 3223 (br m), 3051 (m),
2924 (s), 2851 (m), 1731 (s), 1678 (s), 1583 (m), 1487 (m),
1453 (s), 1392 (s) cm−1; 1H NMR (400 MHz, acetone-d6):
� 9.37 (d, J=7.8 Hz, 2H), 8.13 (d, J=7.8 Hz, 2H), 8.10
(s, 2H), 8.00 (d, J=8.5 Hz, 2H), 7.74 (d, J=8.3 Hz, 2H),
7.48–7.40 (m, 4H), 7.34 (app t, J=7.4 Hz, 2H), 7.26 (app
t, J=7.6 Hz, 2H), 7.12 (dd, J=4.8, 7.4 Hz, 2H), 5.38 (s,
2H), 5.33 (dd, J=2.2, 7.8 Hz, 2H), 4.00 (s, 6H), 3.49 (dd,
J=7.4, 14.0 Hz, 2H), 2.51 (m, 2H), 2.30 (dd, J=4.8, 14.0
Hz, 2H), 2.20 (s, 6H), 1.74 (m, 2H), 1.61 (m, 2H),
1.47–0.99 (m, 22H); 13C NMR (100 MHz, CDCl3): �

173.3, 171.1, 140.7, 137.0, 136.7, 129.3, 125.4, 125.3,
124.8, 123.7, 121.1, 120.8, 120.4, 118.7, 116.2, 115.9,
115.8, 113.4, 107.0, 100.0, 86.2, 85.0, 57.2, 53.1, 42.6,
34.2, 29.3, 29.2, 29.1, 28.7, 28.7, 26.6, 22.7; HRMS (FAB)
m/z 1129.5073 [calcd for C68H69N6O10 (M+H)
1129.5075].

18. (+)-(7R)-K252a Dimer (3): a white powder: [� ]D
20 +107 (c

0.10, CHCl3); IR (thin film/NaCl) 3499 (w), 3405 (br m),
3205 (br m), 3053 (m), 2924 (s), 2853 (s), 1732 (s), 1680
(s), 1584 (m), 1488 (w), 1458 (s), 1393 (s) cm−1; 1H NMR
(400 MHz, acetone-d6): � 9.42 (d, J=8.0 Hz, 2H), 8.17 (s,
2H), 8.15 (d, J=8.3 Hz, 2H), 8.01 (d, J=8.4 Hz, 2H),
7.78 (d, J=8.3 Hz, 2H), 7.48 (app t, J=7.8 Hz, 2H), 7.44
(app t, J=7.9 Hz, 2H), 7.34 (app t, J=7.3 Hz, 2H), 7.28
(app t, J=7.6 Hz, 2H), 7.15 (dd, J=5.1, 7.3 Hz, 2H),
5.46 (s, 2H), 5.38 (dd, J=1.9, 8.1 Hz, 2H), 4.00 (s, 6H),
3.52 (dd, J=7.3, 14.3 Hz, 2H), 2.56 (m, 2H), 2.34 (dd,
J=5.1, 14.3 Hz, 2H), 2.20 (s, 6H), 1.74–1.55 (m, 6H),
1.53–1.06 (m, 20H); 13C NMR (100 MHz, CDCl3): �

174.0, 172.4, 140.2, 137.8, 137.1, 129.1, 126.8, 125.7,
124.9, 124.4, 124.2, 123.3, 122.1, 120.6, 120.1, 117.1,
115.0, 114.1, 107.3, 98.7, 85.1, 84.4, 57.7, 53.9, 41.9, 34.3,
29.3, 29.3, 29.2, 29.2, 29.2, 26.4, 22.9; HRMS (FAB) m/z
1129.5073 [calcd for C68H69N6O10 (M+H) 1129.5075].
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